Key

Math III Review Rational and Radical Equations

Simplifying Rational and Radical Equations

Ex/ Solve
$$2x = \sqrt{5x - 1} + 1$$

Step 1: Subtract 1 from each side to isolate the radical term

$$2x - 1 = \sqrt{5x - 1}$$

Step 2: Square both sides

$$4x^2 - 4x + 1 = 5x - 1$$

Step 3: Set the right side equal to zero

$$4x^2 - 9x + 2 = 0$$

Step 4: Solve for x (factoring, quadratic formula, graphing)

$$x = \frac{1}{4}$$
 and $x = 2$

Step 5: Plug answers back into the original equation and check for extraneous solutions

$$2\left(\frac{1}{4}\right) = \sqrt{5\left(\frac{1}{4}\right) - 1} + 1$$

$$\frac{1}{2} \neq 1\frac{1}{2}$$

So
$$x = \frac{1}{4}$$
 is **not** a solution

$$2(2) = \sqrt{5(2) - 1} + 1$$

So
$$x = 2$$
 is a solution

The solution $\frac{1}{4}$ is an **extraneous solution** because is a solution to the transformed equation, not to the original equation

Ex/ Solve
$$\frac{x}{x-1} - 1 = \frac{x}{2}$$

Step 1: Get a common denominator, in this case 2(x-1)

$$\frac{2x}{2(x-1)} - \frac{2(x-1)}{2(x-1)} = \frac{x(x-1)}{2(x-1)}$$

Step 2: Since the denominators are the same we only need to simplify the numerator

$$2x - 2(x - 1) = x(x - 1)$$
$$2x - 2x + 2 = x^{2} - x$$
$$0 = x^{2} - x - 2$$

Step 3: Solve for x

$$0 = (x - 2)(x + 1)$$

So
$$x = 2$$
 and $x = -1$

Step 4: Plug answers back into the original equation and check for extraneous solutions

$$\frac{2}{2-1} - 1 = \frac{2}{2}$$

$$\frac{-1}{-1-1} - 1 = \frac{-1}{1}$$

$$1 = 1$$

$$-\frac{1}{2} \neq -1$$

So x = 2 is a solution

So x = -1 is **not** a solution

The solution -1 is an extraneous solution

Examples:

1. Solve for x:
$$\left(\frac{x+1}{5} - 2 = \frac{-4}{x}\right)^{5\chi}$$

A. $x = 4$
B. $x = 5$
C. $x = 4, 5$
D. no solution
$$\begin{pmatrix} x + 1 \\ 5 \end{pmatrix} - 2 = \frac{-4}{x} \begin{pmatrix} 5\chi \\ 2 + \chi - 10\chi = -20 \\ +20 +20 \end{pmatrix}$$

$$\begin{pmatrix} \chi^2 + \chi - 10\chi = -20 \\ +20 +20 = 0 \end{pmatrix}$$

$$\begin{pmatrix} \chi^2 - 9\chi + 20 = 0 \\ (\chi - 5)(\chi - 4) = 0 \end{pmatrix}$$

$$x^{2}+x-10x=-20$$

 $+20+20$
 $x^{2}-9x+20=0$
 $(x-5)(x-4)=0$
 $x=5,4$
when they ever plught
in both work

2. Solve for
$$x : \frac{8}{x-5} - \frac{9}{x-4} = \frac{5}{x^2 - 9x + 20} (x-5)(x-4)$$

$$(8x-32) - (9x-45) = 5$$

$$-x + 13 = 5$$

$$-13 - 13$$

$$-x = -8$$

$$x = 8$$
when ployle in $x = 8$ works

3. Solve for x:
$$8 - \sqrt{x + 12} = 3$$
 -8
 -8
 $-\sqrt{x + 12} = -5$
 -1
 $\sqrt{x + 12} = 5^2$
 $x + 12 = 25$
 $-12 - 12$
 $x = 13$ when pluged in $x = 13$ works

4. Solve for
$$x: (\sqrt{x+15})^{2} (5+\sqrt{x})^{2}$$

$$x+15 = 25+101x+x$$

$$15 = 25+101x-x$$

$$15 = 25+101x-x$$

$$-25-25$$

$$-10 = 101x$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$